Interactive Hierarchical Tag Clouds
--for Summarizing Spatiotemporal Social Contents

Wei Kang, Anthony K.H. Tung, Feng Zhao and Xinyu Li
Motivation

• Various social networks

• Various info
 – Status
 – Check-in
 – Tagging
 – Photo/video…

• Many analytics applications
 – User relationship
 – Community discovery
 – Popular topics
 – Trend prediction
 – Food/POI suggestion
 – …
Motivation

- **Social (network) contents**
 - A huge number of contents published each day
 - E.g., Twitter was seeing 400 million tweets per day in June 2012

- **Social contents analysis**
 - Extract useful patterns from huge amounts of social contents effectively and efficiently

- **Summarization of contents to disclose underlying knowledge in social network contexts**
Motivation

• **Purpose of summarization of contents**
 – Organize contents into groups
 – Reveal topics of interest
 – Explore oceans of social media data easily

• **Enrich the summarization with multi-faceted features**
 – Spatial
 – Temporal
 – Visualization
 – etc.
Motivation

• User may ask questions like
 – What did people in Chicago mainly talk about during the President election?
 – What are people in Malaysia discussing on Twitter during the missing plane incident?

• The above questions involve 3 parts
 – Where? (Chicago, Malaysia)
 – When? (during the President election/missing plane incident)
 – What topics? (summarizations of social contents)

• By analyzing spatiotemporal social contents, we aim to provide answers for the above questions
 – Objective 1: summarize social contents for a certain geographic region during a certain time period
Motivation

• How to present the extracted summaries?

• Various visualization tools

• Tag cloud for visualizing summaries of social contents

• Objective 2: visualize the summaries in a hierarchical manner by using “hierarchical tag cloud”
What is hierarchical tag cloud?

(a) Parameters

(b) The first level

(c) The second level

(d) The fourth level
Why hierarchical tag cloud?

• **Purpose of summarization of contents**
 – Organize contents into groups
 – Reveal topics of interest
 – Explore oceans of social media data easily

• **Purpose of hierarchical tag cloud**
 – Organize tags of a summary hierarchically
 – Visualize revealed topics of interest
 – Explore summaries and contents interactively
Challenges

• Develop efficient methods to summarize social contents
 – Existing works often with low efficiency
 • e.g., LDA

• Generate a tag hierarchy to visualize a summary in hierarchical tag cloud

• Further enhance system scalability
Outline

• Motivation
• **Summarization by Biclustering Social Contents**
• Partition and Merge (PM) Scheme
• System Architecture
• Experimental Study
• Conclusion
Summarization by Biclustering Social Contents

- Biclustering
- Bicluster(genes, conditions)

- Bicluster(tags, contents)

 Summary

- Density of a Bicluster
 - $0 < \text{density} \leq 1$
Summarization by Biclustering Social Contents

- **Pros and cons of ordinary biclustering methods**

- **Pros**
 - Tags and contents in a bicluster generated simultaneously
 - Tags serve as a summary of the contents
 - Contents provide more context to supplement tags

- **Cons**
 - Unsupervised, iteration over rows & columns
 - NP-complete to find the largest
 - Not suitable for social network contents (sparse, big data)
Biclustering by Formal Concept Analysis

- **Formal Concept Analysis (FCA)**
- **Formal Concept**
- **Two properties**
 - Fullness
 - Maximum
- **Formal concepts viewed as “full-density” biclusters**
 - Small size
 - Relaxation
 - Merge (PM scheme)
Biclustering by Formal Concept Analysis

• **Formal context**: a triplet \((\mathcal{O}, \mathcal{A}, I)\)
 - \(\mathcal{O}\): object set
 - \(\mathcal{A}\): attributes set
 - \(I\): relation, \(I \subseteq \mathcal{O} \times \mathcal{A}\)

• **A formal concept of a context**: \((A, O)\)
 - \(O \subseteq \mathcal{O}, A \subseteq \mathcal{A}\)
 - \(\forall o \in O, a \in A: (o, a) \in I\)
 - \(\forall o \notin O, \exists a \in A: (o, a) \notin I\), vice versa

• \((A, O)\) is full & maximal

• **A formal concept can be perceived as a bicluster with no empty values** (i.e., density=1)

• Our aim is to find all the formal concepts given social network contents (corresponding to \(\mathcal{O}\)) and the tags (corresponding to \(\mathcal{A}\)) in them
Biclustering by Formal Concept Analysis

• **Galois operators**
 - For any $O \subseteq \hat{O}$, $A \subseteq \hat{A}$
 - $A' = \{o \in \hat{O} | (o, a) \in I, \text{ for any } a \in A\}$
 - $O' = \{a \in \hat{A} | (o, a) \in I, \text{ for any } o \in O\}$
 - $A'' = (A')'$, $O'' = (O')'$

 - For any $O = \{o\}$, $A = \{a\}$
 - a', a'', o', o'' are shown in the right figure
Biclustering by Formal Concept Analysis

- For any \((o, a) \in I\), we can find 4 different biclusters
 - \((a'', o'')\): too tight
 - \((a'', a')\): low fat, has more objects
 - \((o', o'')\): tall thin, has more attributes
 - \((o', a')\): may be sparse, density \(\neq 1\)

- The first three are formal concepts while the last one is not

- Empirically, 2\(^{nd}\) & 3\(^{rd}\) are good choice
- 1\(^{st}\) generates biclusters with very small size
- 4\(^{th}\) tends to generate sparse biclusters

- To remove duplication (avoid generating the same biclusters multiple times), we don’t allow overlapping between biclusters
Biclustering by Formal Concept Analysis

• Example

• Formal Concept
 – Tag-based (vertical scan)
 • \(\{a_2,a_3\}, \{o_2,o_4,o_5\}\)
 – Content-based (horizontal scan)
 • \(\{a_2,a_3,a_4\}, \{o_2,o_4\}\)

• Two properties
 – Fullness
 – Maximum

• Relaxation
Biclustering by Formal Concept Analysis

• Example

• Formal Concept
 – Tag-based (vertical scan)
 • \(\{a_2, a_3\}, \{o_2, o_4, o_5\} \)
 – Content-based (horizontal scan)
 • \(\{a_2, a_3, a_4\}, \{o_2, o_4\} \)

• Two properties
 – Fullness
 – Maximum

• Relaxation
Biclustering by Formal Concept Analysis

• **Example**

• **Formal Concept**
 – Tag-based (vertical scan)
 • \(\{a_2, a_3\}, \{o_2, o_4, o_5\}\)
 – Content-based (horizontal scan)
 • \(\{a_2, a_3, a_4\}, \{o_2, o_4\}\)

• **Two properties**
 – Fullness
 – Maximum

• **Relaxation**
 – \(\{a_2, a_3, a_4\}, \{o_2, o_4, o_5\}\)
Outline

• Motivation
• Summarization by Biclustering Social Contents

• Partition and Merge (PM) Scheme
 – Offline Partitioning
 – Offline Pre-computation
 – Online Merging
 – Mismatch of PM Scheme

• System Architecture
• Experimental Study
• Conclusion
Partition and Merge (PM) Scheme

• **What is PM scheme?**

• **Why?**
 – **Big data**
 • Billions of contents, tens of thousands of tags
 • Gigabytes/terabytes of data storage
 – **Response time**
 • Online computation of biclustering is costly
 – **Scalability**
 • Disk-based
 • Partition data space
 • Process in parallel
Offline Partitioning

- **3 dimensions for spatiotemporal space**
 - Slice data on a daily basis
 - Split (daily) geographic space adaptively accord to data density
 - **Kd-tree/quadtree**
 - Partitioning layout varies daily

![Diagram of offline partitioning](image)
Offline Pre-computation

• Pre-computation is done for each partition of social contents

• Pre-computation of summaries
 – Proposed biclustering approach
 – Assumption: globally interesting summaries are also interesting in certain partitions

• Pre-computation of topic hierarchies
 – Hierarchical Latent Dirichlet allocation (hLDA)
Pre-computation of Topic Hierarchies

- **hLDA: extension of LDA**
 - The topic hierarchy of a partition is generated from the collection of social contents in the generated biclusters of that partition
 - Tree, with a few closely related tags in each node
 - Higher-level tags more general, lower-level tags more specific

- **Example (by applying hLDA to a group of tweets)**
Online Merging

• Merging Biclusters
 – Given time range R_{tim} and geographic region R_{geo}, biclusters in partitions within the two ranges should be merged to produce “unified” summaries
 – Biclusters with common tags are merged
 – Density(new bicluster) > δ_{den}

• Example

(a) Biclusters

(b) Inverted list
Online Merging

• **Merging Topic hierarchies**

 – topic hierarchies for partitions having merged biclusters also need to be merged to form a *tag hierarchy* so as to visualize the new bicluster

 – **Tag-Level matrix**

 | | level₁ | level₂ | ... | levelᵣ |
 |-------|---------|---------|------|---------|
 | *tag₁*| *c₁₁* | *c₁₂* | ... | *c₁ᵣ* |
 | *tag₂*| *c₂₁* | *c₂₂* | ... | *c₂ᵣ* |
 | ... | ... | ... | ... | ... |
 | *tagᵣ*| *cᵣ₁* | *cᵣ₂* | ... | *cᵣᵣ* |

 – weight(*tagᵢ*,levelᵢ) = \((c_{ij}/\sum_j c_{ij})*(c_{ij}/\sum_i c_{ij})\)

 – Draw tags for each level without replacement to determine a final tag hierarchy probabilistically
Mismatch of PM Scheme

- Biclusters (topic hierarchies) are merged when corresponding partitions fall into \(R_{\text{tim}} \) and \(R_{\text{geo}} \)

- Two mismatch cases for \(R_{\text{geo}} \)

- Purpose
 - approximate the mismatch quantitatively
 - verify & tune partitioning parameter: \(\delta_{\text{cnt}} \)
Outline

• Motivation
• Summarization by Biclustering Social Contents
• Partition and Merge (PM) Scheme
• System Architecture
• Experimental Study
• Conclusion
System Architecture

- Vesta (Visual exploration of social network data via tag clouds):
 http://db128gb-b.ddns.comp.nus.edu.sg/kangwei/bicluster/
Outline

• Motivation
• Summarization by Biclustering Social Contents
• Partition and Merge (PM) Scheme
• System Architecture
• Experimental Study
• Conclusion
Experimental Study

• Data sets

 – Real-world geo-coded tweets crawled by using Twitter Streaming API

 – Four data sets: 0.1M, 0.7M, 2.5M, 4.3M

 – 4.3M is a proper approximation of # of geo-coded tweets published daily
Experimental Study

• Performance comparison

• Precision and Recall
Experimental Study

- **Assumption Validation**

 ![Graph](image)

 (a) Number of top biclusters
 (b) Half-matched percentage

- **Mismatch Evaluation**

 ![Graph](image)
Experimental Study

- **Offline System Scalability**

 ![Graphs showing time and memory scaling for offline system](image)

- **Online System Scalability**

 ![Graphs showing time and bicluster number decrease for online system](image)
Conclusion

• We build a system which enables interactive exploration of summaries of spatiotemporal social contents
• We propose a summarization method by biclustering social contents, and extend it to a PM scheme for better scalability purpose
• We generate and merge topic hierarchies so as to visualize summaries in hierarchical tag clouds
Question & Answer

Thank you!